
Fleet Monitoring System
sdmay18-18

http://sdmay18-18.sd.ece.iastate.edu/

Venecia Alvarez, Kendall Berner, Matthew Fuhrmann, 

William Fuhrmann, Anthony Guss, Tyler Hartsock

Client/Advisor: Lotfi Ben-Othmane

http://sdmay18-18.sd.ece.iastate.edu/


Problem Statement
Problem:

- Managing large fleets of vehicles is costly and time-consuming

- Fleet managers don’t have information to make improvements

Solution:

- Vehicle location data and internal data gathered from on-board Raspberry Pi 3

- Server processes vehicle data, provides data to fleet manager website

- Allow a fleet manager to see real time data of vehicles



Market Survey
Other Fleet Management Applications:

- OBD II or Mobile App

- Live tracking, statistics, vehicle data

- Live map of fleet

Our Application vs Rest of Market:

- Minimize driver interaction

- Useful interpretations of vehicle internal data

- Less focus on fleet administration, more on fleet monitoring



Functional Requirements
The product shall:

- Gather data from a vehicle’s OBD-II (On-Board Diagnostics) port

- Transmit data from the vehicle to the server

- Process raw data from the vehicle on the server

- Record vehicle data into a database

- Display a map with a location of all vehicles in the fleet

- Display live data for a certain vehicle (speed, engine temperature)

- Allow managers to register or remove vehicles that belong to a particular fleet

- Allow managers to customize the data being displayed to them



Non-Functional Requirements
The product shall:

- Only allow managers to view fleet data on the website

- Only allow managers to view vehicles in their fleet



Constraints
- Have the server side code made in Node.js

- Utilize Google Cloud services





Detailed Design - Front End
- Emphasis on visualizing data on the main page

- Other pages

- Login

- Register

- Edit fleet

- Edit view

- Technologies Used

- AngularJS

- Chart.js

- Google Maps API

- Bootstrap



http://www.youtube.com/watch?v=cDxIMVuyK1E


Detailed Design - Server
Technologies Used: NodeJS, MongoDB, Mongoose, Bcrypt.js

RESTful API

PID Processing

Swagger Documentation

Hosted on Google Cloud Compute Engine



Server Sequence Diagram



Detailed Design - Raspberry Pi
Hardware Used: PiCAN2, Adafruit Ultimate GPS, Hologram Nova

Technologies Used: Python, gpsd, gpsd-clients, python-gps, python-can, requests

Modules:

- fleet_monitoring_pi: Startup the application, poll configuration in a thread

- can_interface: Use python-can to interact with OBD-II port using threads

- Gps_interface: Use python-gps to interact with gpsd reports using a thread

- api_engine: Singleton, handle API calls

- config: Singleton, handle configuration storage based on polling, startup 

arguments







Testing Plan
- Front End: UwAmp/XAmpp for local testing, confirm database updates show up 

live on the website

- Raspberry Pi: Verify hardware functionality by running Python modules 

individually, verify that api_engine results are correct by comparing with Postman 

calls. OBD-II testing done by OBD-II simulator and rented U-Haul van, as well as 

overall system testing using the real vehicle

- Server: Automated API Testing Using Postman



Testing Results
GPS module tested in operating vehicle - successful

OBD-II module tested in operating vehicle - successful

Raspberry Pi data sent from operating vehicle using Hologram Nova - successful

Website tested to confirm live update of location and statistics - successful

Server tested using Postman runners for all API calls - successful



Alternative Designs
- Java Spring Microservices

- Android Microcontroller

- R Data Analytics

- Google Roads API



Questions?


